Archivi Blog

SHAKEMOVIE: Propagazione (preliminare) delle onde sismiche del terremoto del 30 ottobre 2016 ore 07:40 (M 6.5)

L’INGV ha realizzato il video dell’animazione della propagazione sulla superficie terrestre delle onde sismiche generate dal terremoto di Mw 6.5 delle ore 07.40 del 30 ottobre 2016 che ha coinvolto l’Italia Centrale.


L’animazione è necessariamente preliminare in quanto saranno noti solo nei prossimi giorni i dettagli del processo di rottura che, per eventi di questa magnitudo, sono fondamentali per un’accurata simulazione della propagazione delle onde. Una volta analizzati saranno inclusi in un’animazione a più alta risoluzione.

La scala dei colori è otto volte superiore allo shakemovie realizzato per il terremoto di 24 agosto 2016.


Le onde di colore blu indicano che il suolo si sta muovendo velocemente verso il basso, quelle di colore rosso indicano che il suolo si sta muovendo verso l’alto. L’intensità del colore è maggiore per spostamenti verticali più veloci.
Ogni secondo dell’animazione rappresenta un secondo in tempo reale. Sono rappresentati i primi 2 minuti a partire dall’origine dell’evento sismico.

Non si tratta di un’animazione artistica ma della soluzione delle equazioni che descrivono il processo di propagazione.
La velocità e l’ampiezza delle onde sismiche dipendono dalle caratteristiche della sorgente sismica, dal tipo di suolo che attraversano e anche dalla topografia. Esse, quindi, non si propagano in maniera uniforme nello spazio e luoghi posti alla stessa distanza dall’epicentro risentono del terremoto in maniera completamente diversa. In questo caso si osserva, ad esempio, che le onde si sono propagate con maggiore intensità e più a lungo verso le regioni adriatiche, verso il Lazio e la Toscana meridionale.

L’animazione è generata attraverso la procedura descritta in questo articolo del blog.

snapshot

Dettaglio tecnico:

per ridurre i tempi di calcolo e viste le limitate conoscenze attuali dei dettagli del sottosuolo, la simulazione a scala italiana di questa animazione è relativamente “a bassa frequenza”, visualizza cioè le frequenze delle onde fino a 0.25 Hz. Questo significa che il fronte d’onda “interagisce” con oggetti delle dimensioni di 2/4 km. La risposta sismica locale è quindi limitata agli effetti di strutture geologiche di queste dimensioni. Aumentando il contenuto in frequenze, si evidenzierebbero dettagli più piccoli e, ad esempio, l’amplificazione dovuta ai sedimenti. 

Per migliorare la visualizzazione delle onde lontano dall’epicentro, la scala dei colori è saturata a 0.08 m/s: tutti i valori superiori a 0.08 o inferiori a -0.08 hanno lo stesso coloro rosso scuro – blu scuro, rispettivamente.

a cura di Emanuele Casarotti e Federica Magnoni (INGV).


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

SHAKEMOVIE: Propagazione delle onde sismiche del terremoto del 26 ottobre 2016 ore 21:18 (M 5.9)

L’INGV ha realizzato il video dell’animazione della propagazione sulla superficie terrestre delle onde sismiche generate dal terremoto di Mw 5.9 delle ore 21.18 del 26 ottobre 2016 che ha coinvolto le province di Macerata, Rieti, L’Aquila, Perugia, Ascoli Piceno.

Le onde di colore blu indicano che il suolo si sta muovendo velocemente verso il basso, quelle di colore rosso indicano che il suolo si sta muovendo verso l’alto. L’intensità del colore è maggiore per spostamenti verticali più veloci.
Ogni secondo dell’animazione rappresenta un secondo in tempo reale. Sono rappresentati i primi 85 secondi a partire dall’origine dell’evento sismico.

Non si tratta di un’animazione artistica ma della soluzione delle equazioni che descrivono il processo di propagazione.
La velocità e l’ampiezza delle onde sismiche dipendono dalle caratteristiche della sorgente sismica, dal tipo di suolo che attraversano e anche dalla topografia. Esse, quindi, non si propagano in maniera uniforme nello spazio e luoghi posti alla stessa distanza dall’epicentro risentono del terremoto in maniera completamente diversa. In questo caso si osserva, ad esempio, che le onde si sono propagate con maggiore intensità e più a lungo verso Nord-Est, lungo le coste delle regioni adriatiche, verso il Lazio e la Toscana meridionale.

L’animazione è generata attraverso questa procedura:

1) le onde sismiche sono registrate dei sismometri della Rete Sismica Nazionale dell’INGV e vengono analizzate per determinare i parametri fondamentali del terremoto come epicentro, tempo origine, magnitudo. Per i terremoti con magnitudo superiore a 3.5 viene calcolato anche il “tensore del momento sismico” che è una descrizione matematica delle forze in gioco sulla faglia che ha generato l’evento sismico.

2) viene costruito un modello tridimensionale della regione interessata che include complessità geologiche come la Moho e la presenza di suoli “soffici” (come i sedimenti alluvionali della Pianura Padana e di alcuni bacini appenninici).

Screenshot 2016-08-25 23.07.38

La tomografia sismica è un metodo usato per lo studio dell’interno della Terra in cui determinare la velocità delle onde sismiche attraverso l’analisi dei sismogrammi. In figura alcune sezioni del modello tomografico 3D utilizzato in questa simulazione, i colori rappresentano le diverse velocità delle onde sismiche P, dal rosso (2000 m/s) nelle aree con velocità minori (bacini alluvionali) fino al blu scuro (8000 m/s) nelle aree più veloci. (Di Stefano & Ciaccio 2014)

3) utilizzando il modello 3D ed il tensore momento sismico, viene simulata la propagazione delle onde sismiche tenendo conto della risposta sismica locale, come l’amplificazione delle onde nei bacini alluvionali (terreni soffici) e l’aumento di velocità delle onde sismiche in terreni rocciosi.
Le equazioni sono risolte attraverso il software SPECFEM3D (Peter et al. 2012, https://github.com/geodynamics/specfem3d) al cui sviluppo collaborano ricercatori INGV.

4) i sismogrammi e l’evoluzione dei valori della velocità del suolo sulla superficie terrestre sono salvati e visualizzati attraverso Paraview (www.paraview.org).

Questo tipo di simulazioni è possibile solo da poco tempo, da quando sono disponibili supercomputer che permettono di eseguire calcoli in parallelo. Per questa simulazione (relativamente piccola) sono stati utilizzati 512 processori, per un totale di 5000 minuti di tempo calcolo e 256 GB di memoria.

L’analisi della differenze tra i sismogrammi prodotti da questo tipo di simulazioni e quelli misurati in realtà offrono informazioni cruciali non solo per la determinazione della sorgente sismica e delle caratteristiche del sottosuolo ma anche per la previsione delle scuotimento del suolo prodotto da ipotetici eventi sismici.

Dettaglio tecnico:
per ridurre i tempi di calcolo e viste le limitate conoscenze attuali dei dettagli del sottosuolo, la simulazione a scala italiana di questa animazione è relativamente “a bassa frequenza”, visualizza cioè le frequenze delle onde fino a 0.5 Hz. Questo significa che il fronte d’onda “interagisce” con oggetti delle dimensioni di 1.5-2 km. La risposta sismica locale è quindi limitata agli effetti di strutture geologiche di queste dimensioni. Aumentando il contenuto in frequenze, si evidenzierebbero dettagli più piccoli e, ad esempio, l’amplificazione dovuta ai sedimenti. Per migliorare la risoluzione nella regione vicino all’epicentro, i primi 30 secondi di animazione sono stati ottenuti attraverso una simulazione locale a più alta frequenza (fino a 2 Hz). Per ragioni di visualizzazione la topografia è stata aumentata di 3 volte.

a cura di Emanuele Casarotti e Federica Magnoni (INGV).


Bibliografia:

Peter Daniel, Dimitri Komatitsch, Yang Luo, Roland Martin, Nicolas Le Goff, Emanuele Casarotti, Pieyre Le Loher, et al. 2011. “Forward and Adjoint Simulations of Seismic Wave Propagation on Fully Unstructured Hexahedral Meshes.” Geophys. J. Int. 186 (2): 721–39. doi:10.1111/j.1365-246X.2011.05044.x.

Global Shakemovie: http://global.shakemovie.princeton.edu

R. Di Stefano, M.G. Ciaccio, The lithosphere and asthenosphere system in Italy as inferred from the Vp and Vs 3D velocity model and Moho map, Journal of Geodynamics, Volume 82, December 2014, Pages 16-25, ISSN 0264-3707, http://dx.doi.org/10.1016/j.jog.2014.09.006.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

L’inizio e la fine della sequenza sismica dell’Aquila

Un argomento dibattuto in questi ultimi anni è stato il momento di inizio e di fine della sequenza sismica dell’Aquila del 2009. Si è discusso inoltre delle caratteristiche della sismicità che ha preceduto il terremoto del 6 aprile: si trattò di uno sciame? O il termine fu introdotto impropriamente? In un recente articolo è stato chiarito che la sequenza aquilana iniziò a gennaio 2009 e aveva i caratteri tipici di uno sciame sismico. Vediamo in questo approfondimento qualche dettaglio su come si è giunti a questo risultato e facciamo qualche confronto e considerazione con quanto avviene in altre regioni d’Italia.

Quando è iniziata la sequenza sismica dell’Aquila?

sciame-rulliPer rispondere alla domanda abbiamo utilizzato l’algoritmo di Paul Reasenberg (1985) denominato Cluster2000, distribuito dallo United States Geological Survey (USGS).

L’algoritmo è largamente usato dalla comunità scientifica per analizzare le proprietà statistiche dei cataloghi dei terremoti. Scopo di Cluster2000 è individuare i raggruppamenti (cluster in inglese) di terremoti sia nello spazio che nel tempo.

La procedura analizza un elenco di terremoti, ordinato temporalmente, di cui siano noti l’istante di accadimento, le coordinate geografiche, la profondità e la magnitudo. Essa ci dice, cioè, se due terremoti possono essere considerati parte di un più grande fenomeno fisico che potremmo chiamare “sequenza sismica” o “sciame sismico“.

Utilizzando i parametri standard definiti da Reasenberg (vedi sotto per i dettagli della tecnica), l’analisi fornisce come data d’inizio della sequenza sismica dell’Aquila il giorno 16 gennaio 2009; l’ultimo terremoto della sequenza avviene il 17 aprile 2012, dopo più di 19.800 scosse in oltre 3 anni di sismicità. Per fare una valutazione prudenziale dell’inizio della sequenza sismica abbiamo provato diversi valori di tempo minimo di associazione degli eventi. Solo estendendo questo parametro fino a 10 giorni otteniamo un inizio della sequenza anticipato al 7 gennaio 2009.

Andamento nel tempo della sismicità dal 1/1/2008 al 30 aprile 2009 in un’area di 30 km intorno a L’Aquila. Ogni punto rappresenta un terremoto di magnitudo come nella scala a sinistra. La linea rossa indica l’inizio della sequenza. Si nota bene che l’andamento prima della linea rossa è variabile ma senza particolari addensamenti (ossia sequenze): è la sismicità di fondo

Figura 1. Andamento nel tempo della sismicità dal 1/1/2008 al 30 aprile 2009 in un’area di 30 km di raggio intorno a L’Aquila. Ogni punto rappresenta un terremoto di magnitudo come nella scala a sinistra. La linea rossa indica l’inizio della sequenza. Si nota bene che l’andamento prima della linea rossa è variabile, ma senza particolari addensamenti (ossia sequenze): è la sismicità di fondo.

Allo stato attuale non esistono leggi note capaci di fornire indicazioni sull’evoluzione delle sequenze sismiche. Ogni sequenza ha delle caratteristiche proprie che possono essere studiate solo dopo che la sequenza sia senza ombra di dubbio terminata. In particolare, non c’è nessuna legge o indicazione che possa dirci se il culmine massimo della sequenza sia stato raggiunto oppure no. Leggi il resto di questa voce

Sequenza nel Pollino: aggiornamento e approfondimento

Dal 2010 l’area del Pollino è caratterizzata da periodi di attività sismica frequente intervallati da periodi di relativa calma. In particolare, si è verificata un’intensa attività sismica ad Aprile 2010, a Ottobre 2010 e tra Novembre 2011 e Febbraio 2012. Dopo questo massimo di attività, la sismicità dell’area si è attestata su livelli piuttosto modesti, con pochi terremoti al giorno. Alla fine di maggio 2012 l’attività è ripresa a seguito del terremoto di magnitudo Richter ML4.3 avvenuto il 28 maggio 2012 alle ore 03:06:27 italiane (01:06:27 UTC). L’ultimo evento di magnitudo maggiore di 3.0 è il terremoto ML3.7 avvenuto il 19 agosto scorso alle ore 19:45:08 italiane.

Dal 1 gennaio 2010 ad oggi (28 agosto 2012) si sono verificati circa 2190 eventi di cui oltre 2000 di magnitudo minore di 2.0, 171 di magnitudo tra 2.0 e 3.0, 6 di magnitudo tra 3.0 e 4.0 ed uno di magnitudo pari a 4.3, avvenuto il 28 maggio 2012 (Iside, http://iside.rm.ingv.it).

Sismicità della zona del Pollino dal 2010 ad oggi, 28 agosto 2012 (Iside, http://iside.rm.ingv.it). In giallo la sismicità del 2010, in verde quella del 2011 e in rosso i terremoti avvenuti nel 2012. L’epicentro del terremoto di magnitudo M4.3 del 28 maggio 2012 è il quadrato rosso, in prossimità di Morano Calabro e Castrovillari. I due terremoti di magnitudo maggiore di 3 avvenuti nel 2012 (ML3.2 del 28 maggio e ML3.7 del 18 agosto) sono i due cerchietti rossi più grandi.

Leggi il resto di questa voce

Terremoto in Pianura Padana Emiliana: storia sismica dell’area

L’area interessata dalla sequenza è caratterizzata da una sismicità storica relativamente moderata, confrontabile con quella di altri settori della pianura padana (ad esempio l’area fra Reggiano e Parmense, che negli ultimi anni ha avuto terremoti relativamente frequenti di magnitudo compresa fra 4.5 e 5.5), ma inferiore ad alcuni settori dell’appennino romagnolo, del versante toscano dell’Appennino tosco-emiliano, e decisamente inferiore alle caratteristiche di sismicità dell’Appennino centrale e Meridionale, della Calabria, della Sicilia Orientale e dell’Italia Nord-orientale.

Distribuzione della sismicità storica negli ultimi mille anni (Catalogo CPTI11, http://emidius.mi.ingv.it/CPTI11/)

Leggi il resto di questa voce

%d blogger hanno fatto clic su Mi Piace per questo: