Archivi Blog

Evento sismico Mw 6.0 a Creta (Grecia)

Alle ore 08:23 italiane del 27 novembre 2019, è  stato localizzato un terremoto di magnitudo Mw 6.0 nel mare antistante l’isola di Creta (Grecia), a circa 20 km di profondità.

Screenshot 2019-11-27 09.03.10.png

Nonostante la distanza, l’evento è stato risentito anche in Puglia, in Calabria ed in Sicilia,  come dimostrano i questionari finora compilati su http://www.haisentitoilterremoto.it/ (226 compilazioni alle 8:56).

Mappa del risentimento sismico in scala MCS (Mercalli-Cancani-Sieberg) che mostra la distribuzione degli effetti del terremoto sul territorio come ricostruito dai questionari on line. La mappa contiene una legenda (sulla destra). Con la stella in colore viola viene indicato l’epicentro del terremoto, i cerchi colorati si riferiscono alle intensità associate a ogni comune. Nella didascalia in alto sono indicate le caratteristiche del terremoto: data, magnitudo, profondità (Prof) e ora locale. Viene inoltre indicato il numero dei questionari elaborati per ottenere la mappa stessa.

 


Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Alcune riflessioni in caso di una sequenza sismica come quella di Sora-Balsorano del 7 novembre 2019

Ogni volta che si attiva una sequenza sismica da qualche parte in Italia, specialmente se accade in qualche area ad alta pericolosità, ci poniamo delle domande sulla sua possibile evoluzione. Spesso queste domande sono stimolate dalle persone impaurite che vivono vicino all’area epicentrale o che hanno vissuto in precedenza esperienze di forti terremoti, o ancora da giornalisti.

Abbiamo provato qui a raccogliere alcune delle riflessioni che facciamo in questi casi, provando a dare delle risposte ad alcuni quesiti ricorrenti. Molte delle domande che ci vengono poste sono purtroppo senza risposta, o hanno delle risposte caratterizzate da un elevato grado di incertezza. Alcune delle informazioni qui riassunte sono state riportate più in dettaglio in precedenti post sul terremoto del 7 novembre 2019, sull’inquadramento sismotettonico di questo evento, su un precedente evento sismico di qualche anno fa.

Cosa succede quando c’è uno sciame sismico come quello di questi giorni a Sora-Balsorano?

Si attiva una piccola faglia (o una porzione piccola di una faglia più grande), in un’area notoriamente sismica. Niente di anomalo, in fondo. Di terremoti e sequenze così ce ne sono molti ogni anno in Italia, soprattutto nelle zone più sismiche.

Quali sono le domande più ricorrenti in questi casi?

È normale che si verifichino terremoti? Sì, quell’area come tantissime altre del territorio nazionale sono sismiche.

È collegato con altri terremoti, per es. con quelli del 2016 o del 2009? No, in questo caso sono sistemi di faglia differenti e non collegati direttamente.

Cosa succederà? Non lo sappiamo. Nessuno lo sa … a parte tirare a indovinare.

Ce ne saranno altri? Sì. Dalla notte del 6 novembre ad oggi (ore 21.00, 11 novembre) sono stati 124 i terremoti localizzati in quell’area: oltre al più forte (magnitudo Mw 4.4) del 7 novembre alle ore 18:35 italiane, solo 1 ha avuto M>3, 13 hanno avuto magnitudo M>2.

Ce ne possono essere di più forti? Sì.

È probabile che ci siano terremoti più forti? È poco probabile.

È possibile che ci siano terremoti più forti? Sì. Anche se la probabilità è bassa, non possiamo escludere che avvengano.

Quando? Non si sa… allo stato delle conoscenze attuali non è possibile prevedere un terremoto.

È uno sciame precursore? Molto probabilmente no (si stima tra il 95% e il 99% la probabilità che non ci sia un terremoto più forte), ma potrebbe diventarlo. Da notare che si definirebbe precursore solo dopo un eventuale terremoto più forte. Non c’è modo di capirlo prima.

Cosa si può dire di questa sequenza?

Storia

In quest’area ci sono stati in passato terremoti di magnitudo anche superiore a 6, come nel 1654. Più a sud e a nord anche più forti (1349, 1915) di magnitudo vicina o superiore a 7. Non ci sono elementi sufficienti per calcolare un periodo di ritorno di questi eventi e fare previsioni anche a lungo termine sui futuri terremoti.

Geologia

Ci sono numerose faglie attive nella zona, studiate e catalogate (vedi post sull’inquadramento sismotettonico). Si tratta di faglie “normali” (o dirette), cioè faglie che rispondono a un processo di estensione crostale, ben noto in Appennino e misurato anche dai satelliti. Il terremoto del 7 novembre 2019 ha avuto un movimento per faglia normale appunto, con una piccola componente trascorrente (ossia di movimento laterale), coerente con la geologia recente nota e con altri terremoti dell’Appennino centrale (1984, 2009, 2016). Questo significa che questo pezzetto di faglia si comporta, in piccolo, come quelle più grandi e note. Maggiori dettagli sono disponibili nel post sull’inquadramento sismotettonico.

La profondità ipocentrale (~15 km) è caratteristica degli eventi di questo settore. Nel caso dei grandi terremoti, le faglie che si attivano lo fanno per la loro intera estensione, da 10-15 km in profondità fino a rompere la superficie.

Pericolosità

La pericolosità dell’area è molto alta, in conseguenza dei dati, sismici e geologici, descritti sopra. La pericolosità stimata non da però informazioni su quando potrebbe verificarsi il prossimo terremoto.

Le sequenze di questo tipo in Italia

La maggior parte delle sequenze in Italia con eventi di questa magnitudo (4-4.5) tende a durare da qualche giorno fino ad alcune settimane. La maggior parte finisce senza eventi più forti. In qualche raro caso, invece, si è osservata una scossa maggiore dopo qualche mese (es. L’Aquila 2009, ma ricordiamo che in altri casi, come ad Amatrice nel 2016, l’evento distruttivo iniziale, quello del 24 agosto, non è stato preceduto da alcun foreshock).

Precedenti recenti nella zona

Considerando il catalogo strumentale dei terremoti italiani dal 1985, in un’area di raggio 30 km centrato su Sora, si trovano 6 eventi di magnitudo M≥4, compreso l’ultimo del 7 novembre 2019. Tre di questi eventi, di magnitudo 4.0, 4.0 e 4.1, sono stati scosse isolate, senza repliche. In un caso, in occasione del terremoto del 1 gennaio 2019 (M 4.1) l’attività si è protratta per alcuni giorni, circa 5; in un altro, in occasione del terremoto del 16 febbraio 2013, il più forte del periodo (M 4.8), la sequenza è durata circa due settimane. In nessuno dei 5 casi precedenti si è osservato un aumento della magnitudo dopo gli eventi di M≥4.

Data e Ora (Italia) Magnitudo Zona Prof. Lat. Long.
07/11/2019 18:35  Mw 4.4 5 km SE Balsorano (AQ) 16 41.78 13.60
01/01/2019 19:37 Mw 4.1 3 km W Collelongo (AQ) 17 41.88 13.55
28/02/2015 04:16 Mw 4.1 1 km SW Trasacco (AQ) 11 41.95 13.53
16/02/2013 22:16 Mw 4.8 4 km W Sora (FR) 17 41.71 13.57
06/08/2009 17:36 Mw 4.0 3 km S Fontechiari (FR) 16 41.65 13.67
22/07/2007 19:26 ML 4.0 4 km SW LecceMarsi(AQ) 16 41.91 13.67

Se guardiamo una mappa degli epicentri localizzati finora, l’area interessata si estende per circa 3 km in senso est-ovest e circa 2 km in senso nord-sud.

L’area colpita

Epicentri della sequenza iniziata il 6 novembre 2019 al confine tra Lazio e Abruzzo. Sono riportati gli epicentri di 124 eventi di magnitudo compresa tra 0.5 e 4.4 (dati da terremoti.ingv.it)

Considerando che le localizzazioni epicentrali mostrano sempre una dispersione degli epicentri maggiore del reale (pur avendo in quest’area la rete nazionale INGV un’ottima performance, con errori sui parametri contenuti), l’area interessata è verosimilmente anche più piccola di 3 km x 2 km, una dimensione appropriata per un evento di magnitudo 4.4 (sia la magnitudo ML che quella Mw hanno questo valore). Stiamo quindi osservando l’attivazione di una porzione di faglia molto piccola; non sappiamo come questa sia collegata con le grandi faglie presenti nel sottosuolo e visibili in superficie che sono probabilmente l’origine dei grandi terremoti del passato (come quello del 1349, del 1654 ecc.). Queste devono avere avuto un’estensione di centinaia di km2. Questo non significa che non possano “rompersi” per intero nuovamente (anzi prima o poi lo faranno di sicuro), ma per il momento l’attività è confinata in un volume piuttosto ristretto. Va detto comunque che nei casi di forti terremoti preceduti da altri eventi sismici (foreshocks), l’attività precedente i forti terremoti è generalmente contenuta in un volume ristretto. In sostanza quindi la sequenza di questi giorni non può dirci molto più di quello che sappiamo sull’attivazione di un eventuale forte terremoto. Secondo alcuni modelli statistici c’è un aumento di probabilità di un forte terremoto quando avviene un evento anche piccolo come quello del 7 novembre, ma le probabilità calcolate restano comunque basse. È assodato che la stragrande maggioranza di queste sequenze (tra il 95% e il 99%) finisce dopo alcuni giorni o settimane senza un forte terremoto.

Cosa fare?

Comprensibile la paura. L’unico modo per vincerla è essere sicuri delle case in cui si vive, delle scuole dove mandiamo i nostri figli, dei posti di lavoro, ecc. Approfittiamo di queste occasioni (eventi forti ma sotto la soglia del danno) per ricordarci che viviamo in una terra sismica e mettiamoci in sicurezza prima che arrivi quello forte (che prima o poi arriva, speriamo tra un po’ di anni così abbiamo il tempo per ridurre il rischio).

A cura di Alessandro Amato, INGV-ONT.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Inquadramento sismotettonico del terremoto di magnitudo Mw 4.4 del 7 novembre 2019

L’area epicentrale dell’evento sismico del 7 novembre 2019 (Mw 4.4), posta fra gli abitati di Balsorano (AQ), Pescosolido (FR) e Sora (FR), è caratterizzata da faglie potenzialmente sismogenetiche, responsabili della sismicità maggiore che ha interessato la regione in epoca storica, con eventi di magnitudo Mw stimata di poco superiore a 5, come quelli del 1922 e del 1927, e altri con magnitudo superiore a 6-6.5, come quelli del 1654 e 1349 (CPTI15).

Sismicità storica dell’area epicentrale dell’evento sismico del 7 novembre 2019 (Mw 4.4), posta fra gli abitati di Balsorano (AQ), Pescosolido (FR) e Sora (FR).

L’area interessata dai terremoti di questi giorni è situata nella parte centro-meridionale della Val Roveto, corrispondente al tratto settentrionale del corso del fiume Liri. La valle ha andamento NO-SE e congiunge idrograficamente il settore meridionale della piana del Fucino, nella Marsica, e la piana di Sora, nel Lazio meridionale. La depressione della valle si è impostata lungo una faglia che si segue per circa 40 km (es. Mostardini e Merlini, 1986; Montone e Salvini, 1991; Saroli et al., 2003). A questa struttura tettonica va riferita l’evoluzione geologica neogenica di un ampio settore occidentale della catena appenninica, legata anche al suo ruolo di discontinuità litosferica (es. Locardi e Nicolich, 1992; Saroli et al., 2006). La presenza di tale struttura è testimoniata dalla giustapposizione di unità diverse del substrato meso-cenozoico, e da scarpate di faglia, con il relativo piano esposto, presenti in più luoghi lungo il fianco orientale della valle (es. Carrara et al., 1995; Saroli et al., 2003; Galadini e Messina, 2004).

Mappa delle faglie quaternarie (linee bianche e rosse): OPF, Faglia Ovindoli-Pezza; MF, Faglia della Magnola; TMFZ, Zona di faglia dei Tre Monti; ACF, Faglia di Avezzano-Celano; SVF, Faglia di San Vittorino; LFF, Faglia La Foce; PSF, Faglia di Pescina; SMF, Faglia della Strada Statale Marsicana; PFZ, Zona di faglia del M. Parasano; SBGF, Faglia di San Benedetto dei Marsi-Gioia dei Marsi; TF, Faglia di Trasacco; LMF, Faglia di Luco dei Marsi; VLF, Faglia della Vallelonga fault; ASFZ, Faglia dell’Alta Valle del Sangro. Le stelle indicano gli epicentri dei terremoti storici avvenuti nell’area con l’indicazione della magnitudo stimata Mw e dell’anno di occorrenza (CPTI15). L’epicentro del terremoto di magnitudo Mw 4.4 del 7 novembre 2019 è indicato dalla stella gialla.

La complessità della storia cinematica della faglia, nota in letteratura come “Linea Val Roveto-Atina-Caserta” (es. Funiciello et al., 1981), è riconducibile alle evidenze di movimenti prima trascorrenti e poi, più recentemente, distensivi (Serafini e Vittori, 1995; Galadini e Messina, 2004). In particolare, l’inizio della tettonica estensionale nella zona della Valle del Liri e nelle aree circostanti è da riferirsi al Pliocene superiore. Per ciò che concerne l’attività quaternaria (ultimi 2,6 milioni di anni) della struttura tettonica, ovvero la storia evolutiva “recente” di questo settore, alcuni autori hanno riconosciuto evidenze di deformazione di sedimenti alluvionali relativi almeno al Pleistocene Inferiore (es. Carrara et al., 1995), lungo il tratto centro-meridionale della faglia nella Val Roveto. Nel settore più meridionale, in prossimità degli abitati di Pescosolido e Campoli Appennino, sono state individuate tracce dell’attività anche in tempi più recenti, riferibili alla dislocazione di sedimenti del Pleistocene Superiore-Olocene (quindi con deposizione inquadrabile negli ultimi millenni) (Saroli et al., 2006). Tali evidenze di attività recente sono presenti anche più a sud, nella zona di Posta Fibreno.

Sequenza sismica tra le province di L’Aquila e Frosinone. Dal 6 novembre ad oggi (9 novembre alle ore 11.30) sono localizzati circa 100 terremoti: il più forte è quello del 7 novembre di magnitudo pari a 4.4, uno di magnitudo pari a 3.5, 12 eventi di magnitudo compresa tra 2.0 e 3.0, tutti gli altri di magnitudo inferiore a 2.0.

Nel settore appenninico interessato dalla sequenza sismica sono presenti altre faglie a est della Val Roveto, di interesse per l’inquadramento sismotettonico, in particolare quella della Vallelonga e quella dell’Alta Valle del Sangro. La prima interessa la lunga depressione della Vallelonga, con asse NO-SE, che si sviluppa parallelamente alla Val Roveto, a circa 8 km a nord-est. Lungo il suo fianco orientale affiora a luoghi la scarpata di faglia, immergente verso SO, sia nella parte alta che al piede dei versanti. La faglia sarebbe stata responsabile della formazione della depressione della Vallelonga e sarebbe stata attiva nella parte iniziale del Quaternario (Galadini e Messina, 2001). Successivamente, la sua attività si sarebbe ridotta nel tempo (Galadini e Messina, 2001): a partire dal Pleistocene Medio questa non sarebbe in grado di generare eventi sismici di magnitudo superiore a Mw 6.0±0.2, ovvero in grado di determinare significativa fagliazione di superficie (es. Michetti et al., 2000; Falcucci et al., 2016). Ciò sarebbe testimoniato dalla mancanza di evidenze geologicamente recenti (Pleistocene Superiore-Olocene) di movimenti in superficie, conseguenza della limitata capacità sismogenetica della struttura tettonica. Inoltre, ad oggi non è ancora del tutto chiarito il rapporto tra la faglia della Vallelonga e quella di Trasacco che ne rappresenta il proseguimento verso NO, certamente attiva nel corso degli ultimi millenni e facente parte del sistema di faglie del Fucino (es. Galadini e Galli, 1999), responsabile del grande terremoto del 1915 (Mw 7; CPTI15).

Il sistema di faglie che borda sul fianco sinistro l’alta Valle del fiume Sangro è individuabile a est-sudest della zona epicentrale dell’evento del 7 Novembre 2019. Questo consiste in più segmenti, orientati NO-SE, caratterizzati da cinematica normale e trascorrente sinistra (Galadini e Messina, 1993). Uno dei segmenti più occidentali interessa la zona dell’abitato di Pescasseroli. Gli autori citati hanno riconosciuto evidenze di deformazione di sedimenti di età pliocenica e del Pleistocene Inferiore (Bosi et al., 2003). Evidenze di movimenti più recenti di questa struttura tettonica sono rappresentate dalla deformazione di sedimenti di versante riferibili al Pleistocene Superiore-Olocene (Galadini e Messina, 1993; Galadini et al., 1998). Quindi, l’attività del sistema di faglie che interessa l’alta Valle del Sangro è iniziata nel Pliocene ed è proseguita sicuramente fino al tardo Quaternario.

Gli epicentri della sequenza sismica si collocano a ridosso dell’espressione superficiale della faglia della Val Roveto. Tuttavia, considerata la profondità e la magnitudo, quindi la dimensione della faglia attivatasi con la scossa di M4.4, definire la faglia responsabile della sismicità presenta ampi margini di incertezza, anche in considerazione della complessità strutturale definita dalle conoscenze di superficie sopra descritte. A questo proposito, è opportuno sottolineare che nel caso in cui gli ipocentri della sequenza si distribuissero con andamento sub-verticale, l’elemento tettonico di riferimento potrebbe essere la citata faglia della Val Roveto o strutture a essa associate. Qualora la stessa distribuzione mostrasse un andamento con inclinazione minore e verso ovest, allora si osserverebbe una compatibilità con le descritte faglie poste a est del Liri (faglia della Vallelonga e faglia dell’alta valle del Sangro).

Quanto sopra descritto evidenzia che gli eventi sismici che stanno interessando la zona di Balsorano e le aree circostanti si collocano in un’area che rappresenta il “crocevia” di diverse strutture tettoniche che mostrano attività significativa nel Quaternario, cioè in un ambito cronologico, corrispondente agli ultimi 2.6 milioni di anni, di riferimento per l’individuazione di faglie attive e potenzialmente sismogenetiche.

A cura di Emanuela Falcucci, Stefano Gori, Marco Moro, Fabrizio Galadini (INGV), e Michele Saroli (Università degli Studi di Cassino).


Bibliografia

Carrara, C., Dai Pra, G., Giraudi, C. (1995). Lineamenti di tettonica plio-quaternaria dell’area. In: Lazio Meridionale, Sintesi Delle Ricerche Geologiche Multidisciplinari. ENEA Dipartimento Ambiente, Roma, 151-155.

Falcucci, E., Gori, S., Galadini, F., Fubelli, G., Moro, M., Saroli, M. (2016). Active faults in the epicentral and mesoseismal Ml 6.0 24, 2016 Amatrice earthquake region, central Italy. Methodological and seismotectonic issues. Annals of Geophysics, 59 (5), 59(5). https://doi.org/10.4401/ag-7266.

Funiciello R., Parotto M., Praturlon A. (1981). Carta tettonica d’Italia alla scala 1:1.500.000. Pubbl. n. 269 del Progetto Finalizzato Geodinamica, C.N.R., Roma.

Galadini F., Galli P. (1999). The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): implications for active tectonics. Tectonophysics, 308, 143-170.

Galadini F., Messina P. (1993). Stratigrafia dei depositi continentali, tettonica ed evoluzione geologica quaternaria dell’alta valle del F. Sangro (Abruzzo meridionale). Bollettino della Società Geologica Italiana., 112: 877-892.

Galadini F., Messina P. (2001). Plio-Quaternary changes of the normal fault architecture in the Central Apennines (Italy). Geodinamica Acta., 14: 321-344.

Galadini F., Messina P. (2004). Early- Middle Pleistocene eastward migration of the Abruzzi Apennine (central Italy) extensional domain. Journal of Geodynamics., 37: 57-81.

Galadini F., Ceccaroni E., Falcucci E. (2010). Archaeo-seismological evidence of a disruptive Late Antique earthquake at Alba Fucens (central Italy). Bollettino di Geofisica Teorica ed Applicata, 51 (2-3), 143-161.

Galadini F., Giraudi C., Messina. P. (1998). Nuovi dati sulla tettonica tardo-pleistocenica dell’alta valle del Sangro: implicazioni sismotettoniche. Il Quaternario., 11: 347-356.

Locardi E., Nicolich R. (1992). Geodinamica del Tirreno e dell’Appennino centro-meridionale: la nuova carta della Moho. Mem. Soc. Geol. It., 41, 121-140.

Michetti, A.M., Ferreli, L., Esposito, E., Por-fido, S., Blumetti, A.M., Vittori, E., Serva, L., Roberts, G.P. (2000). Ground effects during the September 9, 1998, Mw=5.6, Lauria earthquake and the seismic potential of the aseismic Pollino region in Southern Italy. Seism. Res. Letts., 71, 31-46.

Montone P., Salvini F. (1991). Evidence of strike-slip tectonics in the Apennine chain near Tagliacozzo (L’Aquila), Abruzzi, central Italy. Boll. Soc. Geol. It., 110 (3-4), 707-716.

Mostardini F., Merlini S. (1986). Appennino centro-meridionale. Sezioni geologiche e proposta di modello strutturale. Mem. Soc. Geol. It., 35, 177-202.

Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. (eds) (2016). Catalogo Parametrico dei Terremoti Italiani (CPTI15). Istituto Nazionale di Geofisica e Vulcanologia (INGV).

Saroli M., Moro M. (2012). Campoli Appennino. Field-trip Guidebook, 16th Joint Geomorphological Meeting, Rome, Italy, July 1-5, 2012; ISBN 978-88-548-4916-7.

Saroli M., Biasini A., Cavinato G.P., Di Luzio E. (2003). Geological setting of the southern sector of the Roveto Valley (Central Apennines, Italy). Boll. Soc. Geol. It., 122, 467-481.

Saroli M., Moro M., Cinti F., Montone P. (2006). La linea Val Roveto-Atina-Caserta: evidenze di attività tettonica. Parte prima: la Faglia Val Roveto-Atina (FVA). Responsabile Scientifico Dott.ssa P. Montone. INGV-Istituto Nazionale di Geofisica e Vulcanologia-Roma. Progetto MIUR-FIRB “Sviluppo di nuove tecnologie per la protezione e la difesa del territorio dai rischi naturali” – Unità di Ricerca “Indagine multidisciplinare per l’imaging crostale”, Rapporto Finale del 10-08-2006.

Saroli M., Moro M., Gori S., Falcucci E., Salvatore M.C. (2011). Tectonics, hydrology and karstic morphogenesis: a new multidisciplinary approach to investigate active faults? From the examples of the 1980 Irpinia earthquake to the Western Marsica case study (southern Latium region). Geoitalia, VIII Forum Italiano di Scienze della Terra, Torino, 19-23 settembre 2011.

Serafini S., Vittori E. (1995). Analisi delle mesostrutture tettoniche di tipo fragile nella Val Roveto, nella piana di Sora e in Val di Comino. In: Carra C. (Ed.) “Lazio Meridionale. Sintesi Delle Ricerche Geologiche Multidisciplinari”. ENEA Dipartimento Ambiente, Serie Studi e Ricerche, 93-107.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

Evento sismico M4.4 al confine tra Lazio e Abruzzo (7 novembre ore 18:35)

Un terremoto di magnitudo Richter 4.4 (Mw 4.4) è avvenuto alle 18:35 (ora italiana) al confine tra Lazio e Abruzzo, tra le province di Frosinone e quella dell’Aquila, a una profondità stimata di 14 km. Le località più vicine all’epicentro sono riportate sotto:

Comune Prov Dist Pop CumPop
Balsorano AQ 5 3569 3569
Pescosolido FR 5 1555 5124
Sora FR 6 26144 31268
Campoli Appennino FR 7 1725 32993
Broccostella FR 9 2741 35734
San Vincenzo Valle Roveto AQ 9 2347 38081
Villavallelonga AQ 10 919 39000

 

Fig. 1. Epicentro del terremoto delle 18:35

La zona interessata dall’evento odierno è caratterizzata da una sismicità frequente, sia a livello strumentale (Fig. 2) che dai dati storici (Fig. 3). Nelle ore precedenti l’evento di M 4.4 erano avvenuti circa 30 piccoli terremoti, tutti di magnitudo inferiore a 3. Nell’ora successiva al terremoto delle 18:35 sono state registrate circa 15 repliche di piccola magnitudo (la maggiore di M 2.2).

Fig. 2. Sismicità recente dell’area

La zona del terremoto odierno è caratterizzata da pericolosità molto alta (Fig. 4), come testimoniato anche dai forti terremoti avvenuti in passato. L’evento sismico storico più prossimo all’area dell’evento odierno è quello del 1654, per il quale si è stimata una magnitudo pari a 6.3. A nord e a sud sono avvenuti in passato altri forti terremoti, come quello del 1915 nella zona della Marsica, e nel 1349 al confine tra Lazio e Molise.

Fig. 3. Sismicità storica dell’area

Altri terremoti storici più recenti sono avvenuti, tra gli altri, nel 1922 (M~5.2) e nel 1984 nella zona della Val Comino (M5.9).

Fig. 4. Mappa di pericolosità della zona

La zona è caratterizzata dalla presenza di una tettonica di tipo estensionale, con faglie dirette (normali) prevalenti. La soluzione del meccanismo focale preliminare mostra infatti una faglia normale orientata parallelamente alla catena appenninica (NO-SE); è attualmente in corso di analisi la soluzione definitiva.

Il terremoto è stato avvertito in un’ampia regione dell’Italia centrale (Fig. 5), come attestano i numerosi questionari ricevuti sul sito di http://www.haisentitoilterremoto.it

Fig. 5. Risentimenti del terremoto dai questionari sul web di “Hai sentito il terremoto?”

La storia sismica di Sora (Fig. 6), uno dei centri più prossimi all’epicentro, mostra una frequenza elevata degli effetti di terremoti di media intensità, soprattutto a partire dalla metà dell’Ottocento quando le osservazioni sono diventate più complete. Si notano anche alcuni eventi che hanno raggiunto il grado VIII o IX della scala Mercalli-Cancani-Sieberg.

Fig. 6. Storia sismica di Sora dall’anno 1000 al 2000. In ordinate l’intensità MCS (Mercalli-Cancani-Sieberg) dei terremoti con effetti a Sora. La maggiore densità di dati nel periodo recente è dovuta a una maggiore documentazione degli effetti.


Licenza

Licenza Creative Commons
Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale.

La mostra INGV “Terremoti: attenti agli elementi. Dettagli che salvano la vita”, un percorso espositivo per rendere più sicure le nostre case

Durante un terremoto, quanto influisce il tipo di terreno sotto la nostra casa?

E quanto le caratteristiche degli edifici?  E se la nostra casa non subisce lesioni, siamo ugualmente a rischio?

Con la mostra “Terremoti: attenti agli elementi! Dettagli che salvano la vita”, in esposizione presso il Festival della Scienza di Genova dal 24 ottobre al 4 novembre 2019, si analizzano le caratteristiche dei terremoti, con particolare attenzione a quegli aspetti che riguardano l’ingegneria, l’interazione tra i tipi di terreno e i fenomeni di amplificazione sismica, le caratteristiche degli edifici e la loro risposta alla sollecitazione ricevuta. Tutti aspetti poco noti sui terremoti ma importanti per la nostra sicurezza.

L’iniziativa, frutto di una collaborazione tra Istituto Nazionale di Geofisica e Vulcanologia, Fondazione Eucentre e ricercatori dell’Università di Genova, ha carattere interattivo ed è arricchita da laboratori che puntano a coinvolgere il visitatore. Con giochi ed esperimenti si mettono in evidenza le semplici ma fondamentali azioni di prevenzione che possono ridurre il rischio sismico e i danni alle cose e alle persone durante e dopo un terremoto.

I terremoti hanno costruito e modellato, insieme ad altri fenomeni naturali, il territorio in cui viviamo. Gli eventi sismici non possono essere evitati né fermati, ma la popolazione può prepararsi e agire per ridurne i danni. La mostra “Terremoti: attenti agli elementi” vuole attirare l’attenzione sulla vulnerabilità degli edifici e sulle azioni che possono contenerla.

Le domande chiave che si vogliono suscitare vengono proposte attraverso un filmato introduttivo che, prendendo spunto da casi reali di terremoti che hanno recentemente colpito la penisola italiana, conducono il visitatore in un’analisi dei “punti” deboli (gli elementi del titolo).

Si tratta di situazioni spesso poco considerate nel bilancio del terremoto ma che hanno una grande importanza. La prima parte del percorso definisce e illustra gli elementi, strutturali e non strutturali, che costituiscono un edificio: pilastri, travi e murature portanti da una parte, finestre, impianti, arredi e suppellettili dall’altra.

Si passa quindi alla descrizione del fenomeno terremoto. La strumentazione installata in una stazione sismica mostra come si misurano le accelerazioni del suolo causate dagli eventi sismici. Si esaminano gli effetti in superficie dei terremoti, che dipendono dalle rocce o dai terreni attraversati dalle onde sismiche così come dalla morfologia del territorio, che modificano l’ampiezza, la frequenza e la durata del movimento del suolo.

Due exhibit mostrano un altro importante fenomeno locale legato al terremoto: la liquefazione dei terreni. In uno dei due exhibit è simulato il fenomeno con i suoi effetti. Nel secondo si osserva la rappresentazione tridimensionale dei danni che provoca. Segue una sezione relativa al diverso comportamento che hanno gli edifici in base alle loro caratteristiche costruttive. Modellini di altalene e di pendoli aiutano a capire con quanta forza le case possono essere scosse dai terremoti.

Sono messe a confronto diverse tipologie di edifici, per esempio quelli costruiti in muratura o in cemento armato, sollecitati dallo stesso terremoto. Le differenti risposte sono simulate con l’ausilio di una tavola vibrante tramite modellini in scala di diverse tipologie di edifici, in cui sono presenti sia elementi strutturali che non strutturali.

Ma come capire quali edifici possono resistere al terremoto? Se ne parla nella sezione conclusiva della mostra. Qui si cerca di individuare quali fattori determinano la vulnerabilità degli edifici, e quali azioni si possono adottare per ridurla e rendere più sicure le abitazioni. In una zona ad alta sismicità ci sono buone probabilità di avvertire un terremoto. L’intento della mostra è quello di rendere il visitatore consapevole della possibilità che accada e preparare la propria abitazione e gli altri ambienti di studio, gioco, lavoro, a questa eventualità.

Poiché ognuno ha un ruolo cruciale nella messa in sicurezza delle case e delle città, il messaggio che si vuole veicolare è la necessità di agire prima che il prossimo terremoto avvenga per fare in modo che i luoghi di vita e di lavoro siano pronti. Il tema della prevenzione è illustrato mediante diversi livelli di intervento che partono dall’essere informati sui vari aspetti necessari per potenziare la sicurezza della propria casa, per poi passare alle azioni vere e proprie.

In dettaglio, il percorso della prevenzione parte dalla conoscenza della pericolosità sismica della zona di residenza, illustrata con la mappa della pericolosità sismica d’Italia.

Il secondo passo è conoscere la vulnerabilità delle proprie abitazioni; il terzo passo è intervenire per migliorarne la sicurezza. Si sottolinea che in ciascuno di questi passaggi bisogna rivolgersi a chi ha la giusta competenza. La casa in cui viviamo è come un paziente malato per il quale si ricorre a un medico specialista. Nel caso delle costruzioni, la competenza è quella dei tecnici esperti in ingegneria sismica.

Per quanto riguarda gli elementi non strutturali di un edificio ci si sofferma soprattutto su quelli che possono stimolare un comportamento pro-attivo del cittadino: sono quegli elementi interni alle nostre case o negli ambienti di studio, gioco e lavoro, su cui è possibile intervenire subito, facilmente e senza ricorrere a un esperto. Finestre, mobili, scaffali, quadri possono rompersi, cadere, danneggiarsi e procurare altri danni. Il tema della loro messa in sicurezza è affrontato all’interno della mostra mediante un laboratorio interattivo che consiste nel costruire e comporre in modo corretto gli interni di una abitazione, e con giochi a squadre adatti a giovani e adulti. Qui le parole chiave della prevenzione, anche contenute nel video, sono: sposta gli oggetti che potrebbero colpirti e i mobili che potrebbero bloccare le vie di fuga; proteggi gli oggetti fragili di valore; fissa gli oggetti che potrebbero colpirti e fissa i mobili alti alla parete. Sostanzialmente un invito ad adeguare la propria casa, rivolgendosi agli esperti per gli interventi più impegnativi.

La mostra si conclude con il selfie-ricordo dei visitatori.

Per il Festival della Scienza di Genova, la mostra “Terremoti: attenti agli elementi! Dettagli che salvano la vita” è allestita nel Museoteatro della Commenda, in Piazza della Commenda, 1, Genova, ed è visitabile dal 24 ottobre al 4 novembre con i seguenti orari: feriali ore 10:00-17:00; sabato e festivi ore 10:00-18:00. Ma non si ferma qui. La mostra è itinerante e sarà allestita anche a Grottaminarda, a Varese e in altri luoghi.

Info e prenotazioni: http://www.festivalscienza.it/site/home/programma/terremoti-attenti-agli-elementi.html

A cura di Maddalena De Lucia, Gemma Musacchio, Stefano Solarino, Fabrizio Meroni, Elena Eva, Salvatore Marino, Lorenzo Scandolo, con la collaborazione del Laboratorio Grafica e Immagini – Daniela Riposati e Francesca Di Laura.


Quest’opera è distribuita con Licenza Creative Commons Attribuzione – Non opere derivate 4.0 Internazionale

%d blogger hanno fatto clic su Mi Piace per questo: